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ABSTRACT 

In this paper we have applied a new approximation technique to solve non-linear partial differential equation.    

The approximation technique is called Homotopy perturbation method (HPM). The main difference between traditional 

perturbation method and this one is that it can be applied for even higher values of the parameter, where as traditional 

perturbation method can be applied only for lower values of parameter. It means that when the value of the parameter is 

less than one only then the traditional perturbation can be applied. In this paper we have considered a highly non-linear 

partial differential equation and found the approximate solution using HPM for two types of initial conditions. Then we 

have drawn two-dimensional and three dimensional graphs from the solution of the equations which demonstrates the 

physical situation of the solution for different values of the parameter. This gives us the clear picture of the range of the 

variables for which the normal solution exists and for what values of the variable the chaotic situation arises. 

KEYWORDS: Approximation Solution, Chaotic Solution, Homotopy, Homotopy Perturbation, Perturbation 

1. INTRODUCTION 

Chaos or chaotic system received great attention among mathematicians and physicists. Because it stemps out 

from natural phenomena. Mathematically one can get this studying linear or non-linear dynamical system or non-linear 

partial differential equations. Unfortunately to get a close form of the solution of any of them is almost beyond our present 

knowledge. However, one can use some kind of analytical or numerical methods to get an approximate solution. 

Recently, J. H. He [1, 2] found an ingenious method to solve non-linear differential equation, which is called 

“Homotopy Perturbation Method” (HPM). He applied this method to solve different types of non-linear equations, such as 

Van der Pol- duffing equations [3] for different types of oscillator [4, 5, 6] problems and so on.  

Here we have applied HPM technique to find the analytical solution of a non-linear differential equation with 

different types of initial conditions. Taking different values of the parameters and for a wide range of time we have found 

the graphical representation of the analytical solution for all domain of response. Following He’s paper [2] we have 

presented the basic prescription of the method in section 2. In section 3 we have applied this technique to solve non-linear 

partial differential equation with two different types of initial conditions and found an approximate solution of the problem. 

In section 4 we have given the graphical representation of the solution for two different initial conditions. In last section we 

have discussed the nature of the solution for different values of the parameters and range of variables 

Homotopy Perturbation Prescription 

J. H. He [1] gave a prescription to solve nonlinear differential equation which can be expressed in the following 

way.  
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Let us consider a nonlinear differential equation of the form 

0)()(  rfuA , r                (1) 

Subject to the boundary conditions: 

0)/,(  nuuB , r                (2) 

where A  is a general differential operator, B  a boundary operator, )(rf  a known analytical function and   is 

the boundary of the domain   .  

In general one can divide the operator A  into two parts: linear and non- linear. That means 

NLA   

where L  is linear and N  is non-linear. 

Hence, equation (1) can now be rewritten as  

0)()()(  rfuNuL , r               (3) 

By the homotopy technique, one can construct a homotopy in the following way Rprv  ]1,0[:),(  

which satisfies 

0)]()([)]()()[1(),(
0

 rfvApuLvLppvH , ]1,0[p , r          (4) 

or 0)]()([)()()(),(
00

 rfvNpupLuLvLpvH           (5) 

Where ]1,0[p  is an embedding parameter, 0
u  is an initial approximation of equation (1) which satisfies the 

boundary conditions.  

Obviously, from equations (4) and (5) we will have:  

0)()()0,(
0
 uLvLvH                (6) 

0)()()1,(  rfvAvH                (7) 

The changing process of p  from zero to unity is just that of ),( prv from )(
0

ru to )(ru . In topology, this is 

called deformation, and )()(
0

uLvL   and )()( rfvA   are called homotopy. According to the HPM, we can first use 

the embedding parameter p  as a "small parameter", and assume that the solution of equations (4) and (5) can be written as 

a power series in p  

..........
2

2

10
 vppvvv                (8) 

Setting 1p  results in the approximate solution of equation (1):  

..........lim
210

1



vvvvu

p
              (9) 
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The combination of the perturbation method and the homotopy method is called the homotopy perturbation 

method (HPM), which has eliminated the limitations of the traditional perturbation methods. On the other hand, this 

technique can have full advantage of the traditional perturbation techniques. The series (9) is convergent for most cases.  

2. SOLUTION OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATION 

In this section we will show how He’s homotopy method can be applied non-linear partial differential equation 

with different types of initial conditions. In this view we have considered a highly non-linear partial differential equation 

with two types of initial conditions, and used He’s homotopy method to solve these problems. The two different types of 

initial conditions considered here is just to see the sensitivity of the behaviour of the solutions for different types of initial 

conditions. Because in any dynamical system it is very important to check whether this types of equations is sensitive to 

initial conditions. 

3.1. Solution of Non-Linear Equation with Initial Conditions 

Let us consider a highly non-linear partial differential equation  

03  UUUU
xxtt

             (10) 

and try to find the solution with the following initial conditions: 

3)0,( xxU   and 0)0,( xU
t             (11) 

In order to solve equation (10) using HPM, a homotopy- perturbation method can be constructed as follows  

0)()1(),( 3

2

2

2

2

2

2















 vv

x

v

t

v
p

t

v
ppvH           (12) 

Substituting ..........[limlim
2

2

10
11




vpvpvvu
pp

 into equation (12) and rearranging the resultant 

equation based on powers of p -terms, we can find the following equations: 

0:
2

0

2

0 




t

v
p                (13) 

0:
3

002

0

2

2

1

2

1 








vv

x

v

t

v
p             (14) 

0:
1

2

012

1

2

2

2

2

2 








vvv

x

v

t

v
p             (15) 

 Solving equation (13) we get 

A
t

v





0

               (16) 

BAtv 
0                (17) 
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Before using the initial condition in (16) and (17) let us clarify one important point. If we back to earlier 

substitution that is  

..........lim),(
210

1



vvvvtxu

p
 

and taking the initial conditions : 
3)0,( xxU   and 0)0,( xU

t   

which implies, 
3

0
xv  and 0..........

21
 vv   

Using the initial conditions (11), at 0t  we get 0A  and 
3xB   

Hence, finally we get the solution  

3

0
xv                  (18) 

From this equation we find 

20 3x
x

v





, x

t

v
6

2

0

2





 

After substituting the value of 0
v , 

x

v




0

 and 
2

0

2

t

v




 in (14)  

we get the equation for 1
v  

)6( 93

2

1

2

xxx
t

v
 




 

Integrating  

Ctxxx
t

v





)6( 931   

Again integrating we arrived at  

DtCtxxxv  293

1
)6(

2

1
  

Using the initial conditions in the above equations we get  

at 0t , C
t

v





01

, Dxv  0)0,(
1   

Putting the values of C  and D  we get 

293

1
)6(

2

1
txxxv               (19) 
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which is the solution for 1
v  

Now to solve equation (15) for 2
v  let us find 

2821 )936(
2

1
txx

x

v
 




 

27

2

1

2

)726(
2

1
txx

x

v
 




 

Using these in equation (15) we get  

)3(
1

2

012

1

2

2

2

2

vvv
x

v

t

v
 









 

 
21529732 )349012(

2

1
txxxxx    

Integrating, 

Ctxxxxx
t

v




 315297322 )349012(
6

1
  

Again integrating, 

DtCtxxxxxv  41529732

2
)349012(

24

1
  

Again the initial conditions (11) implies that  

0C  and 0D  

Therefore 

41529732

2
)349012(

24

1
txxxxxv           (20) 

According to HPM we can write the solution of (10) up to second order of p  as : 

][limlim),(
2

2

10
11

vpvpvvtxu
pp




 

Setting 1p  the above equation becomes, 

210
),( vvvtxu   

Substituting the values of 0
v , 1

v  and 2
v  

2933 )121272(24[
24

1
),( txxxxtxu    
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 ])349012( 41529732 txxxxx                                                                      (21) 

This is the approximate solution of the non-linear partial differential equation (10) with initial conditions (11). 

3.2. Solution of Same Non-Linear Differential Equation with another Initial Conditions 

Again considering the same differential equation 

03UγUβxxUαttU               (22) 

with different type of initial conditions: 

0)0,( xu  and 
x

t
exU )0,(             (23) 

Following the same procedure for this problem we get, 

])2()2020(120[
120

1
),( 5224232 tttetxU x    

 
9527253

480

1
])1119(42[

840

1
tette xx            (24) 

This is the approximate analytical solution of the partial differential equation (22) with another type of initial 

conditions. 

With the help of HPM we are able to solve highly nonlinear higher order partial differential equation with 

different types of initial conditions. 

In the following sections we will find the graphical representation of the solutions of non-linear differential 

equations (10) and (22) found in (21) and (24) for different values of parameters γβ,α,  and for a wide range of x and     

t values. From which we can draw some conclusion of the results. 

4. GRAPHICAL REPRESENTATION OF THE SOLUTIONS OF (10) AND (22) 

In this section we have drawn three-dimensional and two-dimensional graphs from the solution (21) of non-linear 

differential equation (10) with the given initial conditions taking larger and smaller values of the parameter and for a wide 

range of the values of the variables x and t . After a close look to the graphs we have divided the shape of the graphs in 

four kinds. The graphs of similar kind for different parametric values but for a particular range of x and t are depicted 

below. 
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First Kind 
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Figure 1                                                                      Figure 1' 

Figure 1: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  and 

1γ  and Values of the Variables (0,2.5x ) and .2)(0,t . Figure 1' Shows the Corresponding 

Two-Dimensional Graph 
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Figure 2                                                                         Figure 2' 

Figure 2: The Surface Shows the Solution U (x, t) when the Values of the Parameters .5α  , .6β   and 

.7γ   and Values of the Variables (0,2.5x ) and .2)(0,t . Figure 2' Shows the Corresponding 

Two-Dimensional Graph 
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Figure 3                                                                       Figure 3' 

Figure 3: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 2β   and 

3γ   and Values of the Variables (0,2.5x ) and .2)(0,t . Figure 3' Shows the Corresponding 

Two-Dimensional Graph 
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Figure 4                                                                                  Figure 4' 

Figure 4: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5α  , 1β   and 

2γ   and Values of the Variables (0,2.5x ) and .2)(0,t . Figure 4' Shows the Corresponding 

Two-Dimensional Graph 

 

0

0.5

1

1.5

2

2.5
0

0.05

0.1

0.15

0.2

0

5

10

15

0

0.5

1

1.5

2

2.5  0.5 1 1.5 2 2.5

2.5

5

7.5

10

12.5

15

17.5

 

Figure 5                                                                             Figure 5' 

Figure 5: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 5β   and 

1γ   and Values of the Variables (0,2.5x ) and .2)(0,t . Figure 5' Shows the Corresponding 

Two-Dimensional Graph 
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Figure 6                                                                         Figure 6' 

Figure 6: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  and 

1γ   and Values of the Variables (0,1000)x  and (0,1000)t  Figure 6' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 7                                                                            Figure 7' 

Figure 7: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 

6.β  and 7.γ  and Values of the Variables (0,1000)x and (0,1000)t . Figure 7' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 8                                                                             Figure 8' 

Figure 8: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 2β  and 

3γ   and Values of the Variables (0,1000)x and (0,1000)t . Figure 8' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 9                                                                              Figure 9' 

Figure 9: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 5β  and 

1γ   and Values of the Variables (0,1000)x and (0,1000)t . Figure 9' Shows the 

Corresponding Two-Dimensional Graph 
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Third Kind 
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Figure 10                                                                            Figure 10' 

Figure 10: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  and 

1γ   and Values of the Variables (700,1000)x  and (0,1000)t . Figure 10' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 11                                                                              Figure 11' 

Figure 11: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 6.β  and 

7.γ   and Values of the Variables (700,1000)x and (0,1000)t . Figure 11' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 12                                                                         Figure 12' 

Figure 12: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 2β  and 

3γ   and Values of the Variables (700,1000)x  and (0,1000)t . Figure 12' Shows the 

Corresponding Two-Dimensional Graph 
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Fourth Kind 
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Figure 13                                                                              Figure 13' 

Figure 13: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 

1β  and 1γ   and Values of the variables .00001)(1,1x and (0,1000)t .  

Figure 13' Shows the Corresponding Two-Dimensional Graph 
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Figure 14                                                                              Figure 14' 

Figure 14: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 

6.β  and 7.γ   and Values of the Variables .00001)(1,1x and (0,1000)t .  

Figure 14' shows the Corresponding Two-Dimensional Graph 
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Figure 15                                                                                  Figure 15' 

Figure 15: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 

2β  and 3γ   and Values of the Variables .00001)(1,1x and (0,1000)t . Figure 15' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 16                                                                           Figure 16' 

Figure 16: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 

1β  and 5γ   and Values of the Variables .00001)(1,1x and (0,1000)t . Figure 16' 

Shows the Corresponding Two-Dimensional Graph 
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Figure 17                                                                              Figure 17' 

Figure 17: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (0,100)x and (0,100)t . Figure 17' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 18                                                                                Figure 18' 

Figure 18: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (0,100)x and (0,100)t . Figure 18' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 19                                                                           Figure 19' 

Figure 19: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 6.β  , 

7.γ  and 8.λ   and Values of the Variables (0,100)x and (0,100)t . Figure 5.24' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 20                                                                              Figure 20' 

Figure 20: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ   and 1λ   and Values of the Variables (0,1000)x and (0,1000)t . Figure 20' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 21                                                                                   Figure 21' 

Figure 21: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 

1β  , 1γ  and 1λ  and Values of the Variables (0,1000)x and (0,1000)t . Figure 21' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 22                                                                              Figure 22' 

Figure 22: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 6.β  , 

7.γ  and 8.λ   and Values of the Variables (0,250)x and (0,1000)t . Figure 22' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 23                                                                           Figure 23' 

Figure 23: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 6.β  , 

7.γ  and 2λ   and Values of the Variables (0,136)x and (0,1000)t . Figure 23' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 24                                                                        Figure 24' 

Figure 24: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 5λ   and Values of the Variables (0,500)x and (0,1000)t . Figure 24' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 25                                                                          Figure 25' 

Figure 25: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (0,1000)x and (0,1000)t . Figure 25' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 26                                                                                            Figure 26' 

Figure 26: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (130,145)x and (0,1000)t . Figure 26' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 27                                                                           Figure 27' 

Figure 27: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (130,135)x and (0,1000)t . Figure 27' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 28                                                                             Figure 28' 

Figure 28: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (130,145)x and (0,1000)t . Figure 28' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 29                                                                              Figure 29' 

Figure 29: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 

1β  , 1γ  and 1λ   and Values of the Variables (130,135)x and (0,1000)t . Figure 29' 

Shows the Corresponding Two-Dimensional Graph 
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Figure 30                                                                            Figure 30' 

Figure 30: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (130,140)x and (0,1000)t . Figure 30' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 31                                                                         Figure 31' 

Figure 31: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables )(-135,-120x and (0,1000)t . Figure 31' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 32                                                                           Figure 32' 

Figure 32: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (97,1000)x and (0,1000)t . Figure 32' Shows the 

Corresponding Two-Dimensional Graph 
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Figure 33                                                                                  Figure 33' 

Figure 33: The Surface Shows the Solution U (x, t) when the Values of the Parameters 5.α  , 

6.β  , 7.γ  and 8.λ   and Values of the Variables (133,1000)x and (0,1000)t . Figure 

33'Shows the Corresponding Two-Dimensional Graph 
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Figure 34                                                                              Figure 34' 

Figure 34: The Surface Shows the Solution U (x, t) when the Values of the Parameters 

5.α  , 6.β  , 7.γ  and 2λ   and Values of the Variables (27,1000)x and (0,1000)t . 

Figure 34' Shows the Corresponding Two-Dimensional Graph 

 

Eleventh Kind 

200

400

600

800

1000
0

250

500

750

1000

0

5´10
237

1´10
238

200

400

600

800

1000

 
100 110 120 130 140

2´10
291

4´10
291

6´10
291

8´10
291

1´10
292

 

Figure 35                                                                          Figure 35' 

Figure 35: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (99,1000)x and (0,1000)t . Figure 35' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 36                                                                           Figure 36' 

Figure 36: The Surface Shows the Solution U (x, t) when the Values of the Parameters 1α  , 1β  , 

1γ  and 1λ   and Values of the Variables (99,1000)x and (0,1000)t . Figure 36' Shows 

the Corresponding Two-Dimensional Graph 
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Figure 37                                                                          Figure 37' 

Figure 37: The Surface Shows the Solution U (x, t) when the Values of the Parameters 

5.α  , 6.β  , 7.γ  and 2λ   and Values of the Variables (28,1000)x and (0,1000)t . 

Figure 37' Shows the Corresponding Two-Dimensional Graph 

 

RESULTS AND DISCUSSIONS 

To find the nature of the graphs and to give the physical meaning of the solution of non-linear differential 

equation (10) we have drawn 16 numbers of three dimensional and two dimensional graphs for a wide or close range of 

values of the variables x and t and for different values of the parameters γβ,α, . These graphs have shown that the 

approximate solution (21) is valid for all values of x and t and for lower and higher parametric values of βα,  and γ . 

These graphs also indicate that the shape of the graph depends on the values of the variables but not on parametric values. 

Here we can see four different shapes of the graph which are mostly depends on the range of the values of x and t but not 

on any parameter. We can classify these four kinds in the following way. Say for all parametric values but for close range 

of x and t that is if x is from 0 to 2.5 and t is from 0 to 0.2 then let us represent the graph by first kind, which are depicted 

in figures 1 to 5. Similarly, for a wide range values of x and t that means say x is from 0 to 1000 and t is also from                   

0 to 1000 the graphs are same which we call second kind which are depicted in figures 6 to 9. Another shape of the graph 

one can find for close range of x but wide range of t, which we call as third kind. That is the x values say is from               

700 to 1000 but t is from 0 to 1000, which are depicted in figs. 10 to 12. But when the range of x is from 1 to 1.00001 and 



54                                                                                                             M. Tahmina Akter, A. S. M. Moinuddin & M. A. Mansur Chowdhury 

the range of t is from 0 to 1 or 0 to 1000 we have got another shape of the graphs and we call these types of the shape as 

fourth kind, which are depicted in figures of 13 to 16. The two-dimensional graphs that is for a fixed values of t but for a 

wide range of x the corresponding figures of first kind are depicted in figures from 1' to 5' and that of second kind are 

depicted in figures from 6' to 9' and the third kind are depicted in figures from 10' to 12' and the fourth kind are depicted in 

figures from 13' to 16'. All these graphs shows that the approximate solution that found by HPM method are most accurate 

and there is no chaotic solution in this type of highly non-linear differential equation with this type of initial conditions. 

Also it is clear from the graphs that the solution is valid for lower and higher values of the parameter, which is the main 

advantage of the HPM method.  

The approximate solution of (22) that is for the same non-linear equation with the other type of initial conditions, 

the solution found by HPM method is given in equation (24). To find the nature of the solution we have drawn many three 

dimensional graphs for a wide or short range of values of the variables x and t and for different values of the parameters 

and corresponding two- dimensional graphs for fixed values of t. From these graphs we have chosen only 21 numbers of 

both three-dimensional and two-dimensional graphs to show the differences of shape of the graphs. 

In the first case that is for the differential equation (10) we got only four types of different graphs, which are 

almost same but a minor difference in bend point, which is negligible. But in the second case that is for other type of initial 

conditions we got various types of graphs. This is mainly because of the different type of initial conditions. The main point 

here is that the solution of equation (22) exists for all values of the parameters except negative values of the parameter λ  

for a particular range of values of x and t which are depicted in figures from 17 to 24. After certain range of x and t values 

the solution does not exists. And these can be seen for the different range of the values of the x variables and the different 

values of the parameters. This can be easily understood if we look very carefully to the figures: 17 to 24, we can see that 

the solution exists only if x lies between 0 to 136 approximately but for all t and after that there is no solution. This one can 

see from the graphs in figure 35 to figure 37. For negative exponential initial conditions the solution exists in any range of 

values of x and t, which can be seen in figure 25. The solution (24) gives us some irregular shape of the graphs and also 

chaotic solution arises with these initial conditions, whereas in the solution (21) there was no such type of graphs found. 

This is only because of the initial conditions. The chaotic solution found for a very close range of x values but almost for 

all t and even for any parametric value. This one can find in the graphs of figures 26 to 29. Again if we compare                 

figure 25, 30, 31 we can see that for - that is for negative exponential the graph depends on x -values but not on t . 

It is clear from these calculations that the solution is sensitive to the initial conditions. For the same equation due 

to the first type of initial conditions we got regular solution for all x and t. But in the second case we got both regular and 

irregular or chaotic solution. This proves the sensitivity of the initial conditions. From these solutions it is clear that HPM 

is a good semi-analytic approximation method to solve non-linear differential equation or dynamical system.  
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